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On The Fatou Inequality

Aryeh Dvoretzky

1. Introduction

--- The classical Fatou inequality 1

(1.1) f lim Xn (w)dw < lim f Xn(n)dw V

.) for non-negative measurable functions \k is intimately connected with

problems of convergence of random variables (r.v.)._

-) The present paper focuses on the study of a modified form of -*

which has important applications in the theory of convergence of r.v.

We formulate our results in the language of probability. (0,7P)

is a probability space. (a n)nN is a non-decreasing sequence of sub-a-

algebras of f . The sequences (Xn)nEN of r.v. are adapted to (3n

i.e., Xn is 3n-measurable for all n

The stopping times associated with (3 n) are the mappings t: Q- -N

such that {t-n} - {w;t(w)= n} E an for all n. We put jt = {A;An {t-n}

E n for all n} . Xt is the r.v. (Xt)(w) - X t(w),(w) it is jt-measurable.

A bounded stopping time (b.s.t.) is a stopping time assuming only finitely

many values. We donote by T the family of all bounded stopping times.

We use the letter E to denote expectation. The variant of (1.1)

studied in this paper is

(1.2) E limixn lim EIXt
tET
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(Throughout the paper lim, lim , etc. refer to the relevant index increasing

to infinity).

It is easy but not very interesting to establish the conditions for

equality in (1.1). On the other hand, W. D. Sudderth (7] showed that if

the stopping times in (1.2) are not restricted to be bounded, then the

inequality reduced to an equality. (The proof in (71 relies on a martingale

convergence theorem; the result can also be easily obtained from Lemma 4.1

of the present paper).

It is, however, the bounded stopping times that play a major part in

various generalizations of the theory of martingales. The pioneering work

in this connection is due to J. R. Baxter [2] and D. G. Austin, G. A. Edgar

and A. Ionescu Tulcea (n A. Bellow) [1].

All stopping times considered throughout the paper are bounded. A

detailed study of the excess of the right side of (1.2) over the left side

is the core of the present paper.

The Fatou discrepancy is the set function given by

(1.3) lim Xt 11 A - E limiX lA  ,

where 1A (as always in the paper) denotes the indicator of the set A

It plays a central role in the present study.

For simplicity of statements we make the following assumptions:

Al. - a(G) , i.e., the a-algebra 3 is generated by the algebra G

whe re G a U JF•

neN n

A2. limIxn Is almost surely (a.s.) finite, i.e., P(limIXn <a)- I.

The second assumption is equivalent to the right side of (1.2) being

a-finite over G , i.e., to the existence of sets A E G with
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P(A) arbitrarily close to 1 for which E lim EIXt lA < That this

condition implies A2 follows from (1.2), the implication in the other

direction is by a standard argument in the theory of stopping times (used

also in the proof of Lemma 3.2).

In section 2 , we consider the set function p*(A) - lim EIX_ IiA

(AE G) , show that it is finitely additive and introduce through u* a

measure u on 3. In the next section we define, for AE G, a set

function 0(A) - P*(A) - P0 (A) , where 10 is the absolutely continuous

part of i' relative to P , and show (Theorem 3.1) that it is the Fatou

discrepancy (1.3). The fact that 0 dwells on small sets (Lemma 3.1) is

fundamental.

Whereas in sections 2 and 3 we consider only the absolute values

IX of the r.v. Xn, we turn in 4 to the r.v. themselves and their

possible limits. We denote by d the set of r.v. which are pointwise

limits of ::n and by C the subset of integrable r.v. in C. The main

result here is (Theorem 4.1) lim EIX -YI - 0(Q) + p(Y,C) for all
integrable r.v. Y where O(Y,C) is the L distance between Y and C.

This yields (Corollary 4.1) a characterization of C (quite different from

that given by A. Bellow [4] in terms-of sub-martingales). We draw attention

to a useful approximation result (Lemma 4.1).

In section 5 we consider simultaneous approximations. The principal

result here (Theorem 5.1) is that we can associate with every YEC a

sequence of bounded stopping times t (Y) such that X - Y a.s. and,
n tn(Y)

moreover, if Y- Z is integrable then Xtn(y) -Xtn(Z ) - Y- Z in L1 norm.

Results of this nature were proved in [5], [3] and [4] (indeed they are the

key to the proof of the amart convergence theorem). The main point here is
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not in weakening the assumptions and extending the conclusion but in having

the same sequence t n(Y) for all Z.

Section 6 introduces a finitely additive real-valued set function

on L having the property (Theorem 6.1) that there is associated with every

YE C a sequence of bounded stopping times t n(Y) such that, if li.m EIXJ1
m

< , we have E X tn(Y)V - EYV + i(Ai) for every simple r.v.

m

V I XI A (A E G). In particular, E(Xt(y) - Xt V-E(Y-Z)V fori(Z) V Ai E( Z)VY for

all Y, ZE Z when i,j - ® independently of one another (unlike the situa-

tion in the preceding paragraph).

Except in the last section, only real-valued r.v. are considered. In

7 the results are extended to r.v. assuming values in a Banach space. Those

of 6 carry through to finite dimensional Banach spaces;all other results

remain valid (with minor variations) in infinitely dimensional Banach spaces.

We use the letters t,s,r to denote bounded stopping times and X,Y,Z,V

to represent random variables.

2. The set function U* and the measure pi

Definition 2.1. We define a set function p*(A) on G

(2.1) P*(A) lim EIXtllA , (AE G)

4
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We recall that (2.1) is equivalent to the following statement. There

exists a sequence (tn)ne N of bounded stopping times increasing to

infinity such that

(2.2) lim EIXt nA = t*(A)
n

while for all sequences (s ) of b.s.t. with s n  we have

Li-m EIXs I1A > *(A) . u* is a monotone set function from G to [o,®].
n

When it is necessary to exhibit the dependence of u* on the sequence

Xn we shall write *(.,(Xn)) Similarly for i,...,€ which will be

introduced later.

Lemma 2.1. U* is finitely additive on G , i.e.,

(2.3) * (AuB) B (A) + p* (B)

for disjoint A,B 4 G .

Proof. Let t n* be b.s.t. for which (2.2) holds with A replaced

by A u B . Then

(2.4) 4*(Au B) ? lim EIXt 1lA + lim EJXt 11B
n n

? lim EIXt lA + lim E XtjlB - V*(A) + u*(B) •

On the other hand, let Ac k and tn satisfy (2.2) and s n

be b.s.t. satisfying EIx Il -B U*(n). Assume further sn -k, tn 2k for

n

all n. Putting Tn t for weA and T nS for w A

n n

. ,€5



we have

,2.5) i (A u B) Ern EIX I1Au B rli EIX t ItA + lim .X, 11B

n n n

=1 *(A) + * (B).

Together with (2.4) this yields (2.3). 0

The following easy result will be useful.

Lemma 2.2. If P*(A) < w and t n are bounded stopping times

satisfying (2.2) then

(2.6) lim EIxt 1B = p*(B)
n

holds for every B E G with BcA .

Proof. Otherwise, since 1*(B) _ p*(A) < , we would have

lim EIXt liB > ij*(B) Taking C - A\ B we have, by definition,
n

lim EIX t 1 > C i*(C) . Con'bining the two relations we obtain
n

i-- EIX t 11A > V*(B) + p*(C) - u*(A) contradicting (2.6). 0
n

j may not be a - additive on G (see Remark 2.1). We can, however,

derive in the standard way a a-additive function.

For every A 6 C we put

(2.7) P(A) infl n *E i*(An); A c U A n A G nEN

6



Since .* is monotone we may confine (2.7) to countable partitions of

A into sets A E C L * is a monotone function from a to (o,-].
n

Clearly

(2.8) p(A) < u*(A) , (A E )

Lemma 2.3. p is countably additive on G .

Proof. Let A,B E G be disjoint and C - Au B . Since each partition

(Cn neN of C corresponds to the partitions (AnC n ) and (BnC ) of A

and B and vice versa the finite additivity of p follows at once from that

of U*

We have to show that if A E G(nEN) are disjoint and A - UA E Gn n

then

(2.9) ij(UA n ) n u(A )

Since p is finitely additive and monotone the left side of (2.9) is _ the

right side. Thus it remains to show that u(U An) 5 1 P(An) and this only

when the right side is finite. Let e > 0 be given and let, for every n

An,j (j E 1) be a partition of An into sets of CI satisfying j*(An j ) <
JEN

p(A ) + e/2 n . Then A (J,nE N), constitute a countable partition of A
n n,j'

and j u*(An,j ) < I p(An) + E 0
J~n n

Since, by (2.8) and Assumption A2, V is a- finite on C it extends

uniquely to a measure on - a(G). We denote this measure by the same letter

.
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Definition 2.2. V is the measure induced on ;F b (2.7).

Remarks. 2.1. U* need not be countably additive on G Thus for

Q (0,1],P the lebesgue measure, X n = 2n 1 (0,2-n and Yn " (X"''Xn)'

we have P*(A) 0 for all n but u*(Q) = fi*(UA n) 1 , where Ant (2 -n,2 .-n+l

2.2. As seen from the proof of Lemma 2.1, lim EIXt AuB  > lim EIX tI A +

lim EIXtI1B for all disjoint measurable A and B (not necessarily in

d Moreover, equality holds if either A E G or B E G.

If, however, neither A nor B are in C there may occur a sharp

inequality. Indeed, taking in the preceding example A = U(2 ,2

and B as its complement, we have lim E X t = i_._m E Xtl1 = 0 but

P*(SI) = lim E Xt = 1 .

2.3. For measurable A i G we need not have (A) < lim EIXt lA

as in (2.8). Indeed, modify the example in Remark 2.1 through replacing

Q - (0,11 by Q - [0,11. Then ({0}) = 1 .

3. The set functions *,A and the measures 01A *

Since 1i is a- finite it can be decomposed according to Lebesgue.

Definition 3.1. a_ u are, respectively, the absolutely con-

tinuous and singular components of the measure P relative to P

U and ul are, of course, defined for all measurable sets. The

following definition introduces a set function on G which occupies a

central position in the present paper.

Definition 3.2. The Fatou discrepancy of the sequence of random

variables (Xn) relative to the a-fields ( n) is givenb

8



(3.1) O(A) (A) ( A (A)), (A E G)

where, in case PO(A) = , this is to be interpreted as sup{o(B);BcA,

B-z G, po(B) < ®o.

We put

(3.2) A(A) - *(A) - (A) , (AE G)

where again, if v(A) = , this is to be interpreted as above. Clearly

(3.3) + P

A and 0 are finitely additive (on their domain of definition Q)

One could loosely describe A and as the dissipative and singular

components, respectively, of U*

It follows from Theorem 3.1 that P 0 depends only on the sequence

(Xn) and not on the filtration (; ) . It then follows from (3.1) that

any two filtrations which yield the same value of p*(A) will give also

the same value of O(A). Remark 3.1. will point out that this is not true

for A(A) or u (A) . This is the reason why it is not A or i but

their sum (3.3) that figures prominently in our results.

Theorem 3.1. We have for all measurable sets

(3.4) 0(A) - E limIX n 1A , (AE 3)

9



The following result is the key to the proof of Theorem 3.1.

Lemma 3.1. dwells on small sets, i.e., for every E > 0 there

exists A E C satisfying

(3.5) P(A) > l-c , (A) < E

Proof. (This result is equivalent to the apparently more general

statement: given B E G and E > 0 there exists a set AcB, A E3 such

that P(A) > P(B) - E and O(A) < E.) Since by Assumption A2 , 0 contains

sets of CL with probability arbitrarily close to 1 with finite W*

it is enough to prove (3.5) for the case w*(Q) < . Let A (nE N) be an
m

partition of Q into sets of G for which Zp*( A) < vi(() + E/2. Then A(A n ) =
ni

m m m
I (UA) - (UA ) < e/2 for all mE N and P(UA ) > I-c/2 for large m

I I I

Hence there exists A' G with P(A') > I - e/2 and A(A') < F/2.

Similarly, since pi i P and J = o(G) , there exists A'E G with

P(A") > I - E/2 and p 1(A") < c/2. A = A' n A" satisfies (3.5).

Lemma 3.2. For every e > 0 and k N there exists AE G and a

bounded stopping time t > k such that

(3.6) P(A) > 1 - e , EIXtl1A < E limIXn lA + e

Proof. Let A be the set described in the preceding Lemma with E

replaced by c/4. We may assume u*(A) < - . Since P0  is absolutely

continuous and U 0(A) < - there exists 6 > 0 such that P0 (B) < c/4

10



for every B c A with P(B) < 6 . Then also u*(B) v io(B) + O(B) < c/ 2.

Let Y be a simple (i.e., assuming only finitely many values) a- mea-

surable r.v. with P(lim X < Y < lir Xn + e/4) > I-6. Y is J -measurable
- n n r m

for some m and we may take m> k. Let the b.s.t. s> M be such that

P(JX SI< Y) > 1-6. Let C = ffi s < Y} and D be its complement. Let

the b.s.t. t>s be such that EIX T1AnD < P*(AnD) + e/4 < 3e/4

Put t = sl C + ri then

EIXt11A EIXtI1AnC + EIX t1AnD < EIYIlAnC+ 3e/4

< E limiX nlA + E .

Proof of Theorem 3.1. As remarked in the introduction lim.JX nhA

is finite a.s. and both sides of (3.4) are a-finite measures on - o(G).

It suffices therefore to prove the assertion for A E G with p*(A) <

Without loss of generality we may take A = Q and assume P 0 (0) <

E limiXni <

Let c> 0 be given, choose AE CL satisfying (3.5) and denote its

complement by B. Then E limIXnI - E lim IXn hlA + E limixn lB l *(A) +

E limxn JB 0 B 0(A) + 4(A) + E limXnI]B <- L0(Q) + c + E limhXn lB . Since

limIXn I is integrable letting E - 0 we obtain

(3.6) E limiXn -! Uo(0) .

For the set A of Lemma 3.2 we have u*(A) s E limx nI + e . Denoting

by B the complement of A we have u0 (i) - U0 (A) + u 0 (B) 5 E limIX n+ c +

U0(3) Letting E - 0 we obtain the reverse of inequality (3.6).

I



Theorem 3.2. The sign of equality holds in the Fatou ineauality (1.2)

E lim_X n 1 lim E!xtl

if and only if O(Q) - 0.

The following result will be useful in the next section.

Lemma 3.3. Let (X n), nE N be a sequence of random variables adapted

t (3n ) and put 17*(.) -*(.( ))(.()- (Xn)) etc. f suPlK I- IXnln nhEN n

is integrable then .

Proof. Putting Y = suplil - 1Xnl we note that the set function

V f - * satisfies Iv(A)Il < EY A  for AE G . Since v is finitely
A

additive it follows that it is countably additive and hence (extends to) a

signed absolutely continous measure on 3 . From Definition 2.1 it follows

at once that V - P + v, thus A - A . Since V is absolutely continuous

the singular parts of p and - are the same. Hence V1 
i , l Q

Remarks 3.1. In the example considered in Remark 2.3 we have l1 (Q)

A(Q) - 0. If we replace 3n = a(X''''Xn ) by an = a({O}Xl'..'Xn) we

will have p - 0, A (Q) - 1

3.2. Let Q = [0,1], P be the lebesgue measure and 3n be the algebra

n n2
n

generated by ((i-l)/2 , i/2), i. 1,...,2 and let Xn - 2 1 1A  where

iinl i,n

Ai,n - (i/2n - 1/2 2n , i/2 n ) . Then Xn - 0 a.s. but u and w0 coincide

with the Lebesgue measure. Here, of course, Xn  is not adapted to 3 n , thus

exhibiting the necessity of this requirement for the validity of our theorems.

12
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3.3. It follows from Theorem 3.1 and Lemma 2.2 that if v*(Q) <

and the b.s.t. t n~ satisfy EIX t n *Q hnEX 1A-b' E limIX n 1lA +

0(A) for every At- G .Hence, even when u~*(Q) ,there exists a

seueceof b.st. T such that E1X 1l E lim tX 1 'l od
seuecen T 'A - n A +*A od

n

for every AE G

4. The cluster set.

Until now, we have considered only the absolute value Ix I of the

nn

Definition 4.1. The cluster set C nC( ) of the sequence of random

variables (X n) i s the set of random variables X which are as.

pointwise limits of the random variables X, n9i. which satisfy

(4.1) P(limfxn - Xl - 0) - 1

C is the subset of C5 consistin2 of the integrable random variables

in the cluster set, i.e., C a Cn L ( 2,,P)

C is a closed set in the metric space L, M L 1 03P. TheL

distance from an integrable r.v. Y to C is given by p(Y,C)

inf{EIJY-Xl1; XE C1 Unless C is empty there exists 'E C for which

the infimum is achieved.

if Y ! Z(xn ) then, obviously, lYIIEC(IX n1). Conversely, if YEd(jX n )

there exists ZECM(n ) with IZI - Y. Indped, there exist b.s.t. t n~

for which Ix~ I -~ Y (this is a well-known result, see e.g. [1]; it also

follows from Lemma 4.1). We may take Z Y on {lim X > 0} and Z -- Y

otherwise.

13



It follows from this observation that if X' g C and EX' -YI - p(YC)

then P(limiXn-YJ - X'-YJ) -1.

C(X n ) is not empty since lmIXnI E C(JXn1) . Also, C is not

empty if and only if

(4.2) E limiXni <

A special case of the following approximation result was used in the

proof of Theorem 3.1.

Lemma 4.1. For every e > 0 there exists a set Ac CL with P(A)> 1-c

such that for every YE C there exist arbitrarily large bounding stopping

times t satisfying

(4.3) EJX t- Yll A < C

If YE C there exist sequences of G-measurable set A and bounded-- n

stopping times t - such that Xr 
1 A -* Y in L1- nor m.

n n

Proof. The first part is a restatement of Lemma 3.2 for the sequence

(X - Y) . The second part follows upon denoting by t and A a b.s.t. and
n n n

set satisfying (4.3) with e - 1/n

Theorem 4.1. If Y is an integrable random variable then

(4.4) lim ElXt - Y1 - l) + O(YC)

14



Proof. By Lema 3.3 the * corresponding to the sequence of r.v.

(Xn - Y) is the same as that corresponding to the sequence (X .

Assume first Cs 0 , then we have by Theorem 3.1 lrm EX t - Y1 - 0(0) +

E limIX - Y1 and, as remarked above, p(Y,C) equals the second summand on

the right.

It remains to check that if (4.2) fails then lim EIX - Y lim EIX -
tt

Corollary 4.1. IE Y is an integrable random variable then

(4.5) lim EIX t- YJ -

and if

(4.6) lim EIX t - YI <

equality occurs in (4.5) when and only when YE C

The following is an immediate extension of Theorem 4.1. (We recall

that Assumption A 2 implies C A 0)

Corollary 4.2. Let Z E C and denote by C the set of integrable

random variables X for which Z + X E C . Then, for every integrable

random variable Y we have

(4.7) lim EIX - z +Y) 1 0(0a(X-Z)) + Q(Y,Cz)

The following result is useful.

15



Lemma 4.2. If O(Q) < , Y is an integrable random variable and the

bounded stopping times t - satisfy

lir EIX - 1-
t
n

then X - Y in probability.
tn

Proof. If the conclusion fails there exist 6> 0 and a subsequence

(sn) of (t ) such that EX s - YlB > 6 for all B with P(B) > 1-6
n

and all n

Take c <6 , let A be the set described in Lemma 4.1 and let B be

its complement. Then lim EIX, n > lim EIXsn -Y1 A + lim EX n- Yll B

6 + O(B) 2: O(Q) + 6 - > O(Q).0

Remarks 4.1. Lemma 4.1 implies that every YE e is the limit in pro-

bability of a sequence X with t n . (This actually characterizes

C since a subsequence of Xtn will converge a.s. to Y .) This result

about approximation in probability is well known and has been extensively

used in the study of Amarts and related topics. It is explicitly stated

and proved in [1] and is implicit and crucial in [2].

4.2. Notice that the set A in the approximation Lemma 4.1 does not

depend on Y.

4.3. If Z,Z' E C and EIZ' - Zj < - then, with the notation of Cor-

ollary 4.2, Ci,. -C Z thus the right side of (4.7) does not change if Z

is replaced by Z'

16



5. Simultaneous approximations.

If Y, ZE C and (n) - 0 there exist sequences (s n ), (t ) of b.s.t.

such that X - Y , Xtn .Z in L1 norm and hence also XSi - X Y-Z

in L1 norm as i,j independently of one another.

The situation is quite different when *(Q) > 0 . In the example of

4 Remark 2.1, where C consists of the one r.v. Y 0 , if t and s are

any b.s.t. with min t > max s we have EiXt - Xs > 1 • Thus there can-

not exist sequences (sn), (tn) satisfying EIX - I EjY-Y I - 0 as iJ

independently of one another. If, however, we let j- J(i) then the

L1  approximation of Y-Z can be achieved.

Theorem 5.1. To every Yrz C there exists an increasing sequence of

bounded stopping times tn(Y), n, N, satisfying Xt (Y) , Y a.s. and such
n

that for any Y,Z with ElY - ZI < - we have

(5.1) Xtn(Y) -Xtn(Z) , Y-Z

in L - norm.

Proof. Let A be a set having the properties described in Lemma 4.1n

for c-1/n Let kn be such that An c and sn  k beab.s.t.

satisfying (4.3) for these An and c We may take sn > an. Let (

be any increasing sequence of b.s.t. satisfying T n k n Put t nY)

sn (Y)l A + Tn 1B  where Bn  is the complement of An . Then, for any

n n

Y,ZcC we have EIXtn(Y) -Xtn(Z ) - (Y-Z)I EiXt .(Y) - - (Xtn(Z)- Z)IAn +

ElY-ZIB < 2/n2 + EIY-Ztl Bn 0 since Y-Z is integrable. C

17



A similar argument yields,

Theorem 5.2. If C is not empty then for every integrable Y there

exists an increasing sequence of bounded stopping times t n(Y) such that

X - Y' a.s. where Y' C is nearest (in Lr-mtric) to Y, i.e.,
tn(Y

EIY-Y' I p (Y,C) , and

(5.2) lim EIXt( - Xtn(Z) - (Y- Z)I < o(,C)+ P(Z,C)

for all integrable random variables Y,Z.

The assertion implies that the limit in (5.2) exists.

Remarks 5.1. J. R. Baxter [3), following an extension of the Fatou inequality

by R. V. Chacon [5], proved that if lim EIXnl < - and Y,Zc C there exist b.s.t.

sn , t n satisfying X. - Xt -0 Y-Z in L -norm, these sequences
n n

were, however, dependent on the pair Y,Z . (See also A. Bellow [4]).

5.2. If Y-Z is not integrable then, by Fatou, EIXt(Y) - Xt (Z)I

5.3. Theorems 5.1 and 5.2 can be extended to the situation considered

in Corollary 4.2.

6. A signed set function .

For simplicity of statements we assume in this section

(6.1) *(a)
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and put X lim Xn .

Definition 6.1. Let, for A E

(6.2) *+(A) - sup{lim E(Xt - X)+IA ; lir EIXt - XI A  O(A)}

(i.e., we consider only such sequences of bounded stopping times t n

for which the condition holds). Let -(A) - O(A) - 0 +(A) and O(A) -

+ (A) -

Clearly, 0 0 + * and I .

Lemma 6.1. *+, - and $ are finitely additive on G

Proof. It suffices to prove this for . e remark that the sup in (6.2)

is achieved. Let A, B be disjoint with A, B E 3k . Let the increasing

sequences of b.s.t. (s) and (tn) satisfy s1 t1 > k and E(Xtn 1)+ 1A

*+(A), EIXt - XIA -0 0(A) and similarly for sn and B. !et Tn - tn

on A and = s on its complement. Then EIXT - XIlAuB "' 0(A) + 0(B) -
nn

0(AuB) while 0+ (A u B) a lim EIX T - X1lAuB = 0+(A) + 1+(B). Starting
n

with b.s.t. Tn satisfying E(X T - X)+IAuB + (AuB) and ElX T - X1AuBn n

O(A uB) we obtain (see Remark 3.3) the opposite inequality. 0

We need the following strengthened and extended version of Lemma 2.2.

Lemma 6.2. If the bounded stopping times tn satisfy

(6.3) E(Xt - x) +  0+() , EIXt - ()
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then, for any sequence (A n ) of sets with AE U tn (nF N) we have

E(tnt X- A -An

(6.4) E(X - X)1A - $(A) 0 EIXt il - A) 0
A n n n n

In particular E(Xt - - A - $(A) for all AE E .

Proof. We recall that (6.1) is assumed. First we show that the second

condition in (6.3) implies the second assertion in (6.4). Suppose

lim(EIXt - XIlA - *(An)) < 0 , then there exists e > 0 and a subsequence
n n

for which EIXt - XIlA < O(An ) - E Without loss of generality we may
n n

assume that this inequality holds for all n . Let B be the complement
n

ofAn.* There exists Sn > tn satisfying E1X s - _ < *(Bn ) + e/2 . But

then, putting Tn - t n A + s 1 we have EIXT -XI < O(A ) + O(Bn) - /2

n n n

0() - c/2 which is impossible. If l-m(E!Xt  - X0 A  - *(An > 0 then
n n

lim E(IXt -Xll - 0(Bn)) < 0 which is again impossible. This establishes
n n

the second part of (6.4).

The rest of the Lemma will follow if we establish E(X t - X)+A - 0+(A n )

n n

0. Suppose, E(Xt - X)+'A > +(A n ) + c then we can construct a b.s.t.
n n

Tn  for which E(X - X)+ > *+ () + c/2 and EIX - X I < EIX t  -1x1 A

*(n n tn n~l

+ O(Bn ) + 1/n which leads to a contradiction. The case lim(E(X - X)+IA -
nx_ t A

n n
+ (A n)) < 0 is treated by considering the sequence (Bn ) . 0

Lemma 6.3. If Y oE C there exists an increasing sequence of bounded

stopping times t n(Y) such that Xt  - Y a.s. and

20



(6.5) E(Xt (y) - Y)1A 1A (A)
n

for every A E G.

Proof. Let A E G be such that P(A ) > 1 - 1/n2 and *(A ) < 1/n

(see Lemma 3.1). Let B E G be a subset of A and an(Y) be a b.s.t.
• n n

such that P(Bn) > 1 - 2/n2 and EIKsn(Y) - ¥1IB < 1/n (see Lemma 4.1).

nn

Let (t n) be a sequence of b.s.t. satisfying 
(6.3). We may assume that

(s Y)) and (t n) are increasing and that A., Bn E jsn(Y ) n .tn Put

tM S nMB + tn1C where Cnis the complement of B . Then

n n

Xtn(Y) - Y a.s. and

(6.6) E(X y )l= E(X Y)I + E(Y-X)I
6(Y)s n(Y) AnB - AnC

+ E(Xt - X)lAnCn n

The first two summands -1 0. Also *(AnC n) $(A) - j(AnBn ) , but Ij(AnB n) -

*(AnBn) :s WAn) . Thus O(AnC n) - $(A) and hence, by the preceding L-mma,

the last summand in (6.6) -). (A)

An immediate consequence is

Theorem 6.1. If lim EIXtj < - there exists for every Y F C an

increasing sequence of bounded stopping times 
tn (Y) such thatIM

(6.7) E X t (y) V E BY V + i Oi *(A i)
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m

for every simple G- measurable random variable V A 1 A (Ai  i-l,...m).
il i

Corollary 6.1. For all Y, Z E C and every simple -measurable random

variable V

lim E(Xt (Y) - Xt (Z))V - E(Y- Z)V

as i,J independently of one another.

Remarks 6.1. There are, in general, many additive set functions

for which Theorem 6.1 holds. E.g. if we replace lim by lim in (6.2) we

obtain another, usually different , * with the desired properties.

6.2. From the proof of Lemma 6.3 it is seen that the b.s.t. t n(Y)

may be assumed to have simultaneously the properties described in Theorem 5.1

and Theorem 6.1.

6.3. Theorem 6.1 is stated for the case that C is not empty. If it

is empty similar results hold for Cz with Z E C (See Corollary 4.2

and Remark 4.3).

7. Banach space valued random variables.

In this section we consider vector r.v. Q - S where S is a fixed

Banach space (not necessarily over the reals).

Obviously nothing has to be changed in sections 2 and 3 beyond replacing

the absolute value 1 1 by the norm 1 I1 of S. Similarly C and C are

defined by (4.1) with IIXn -XII replacing IXn - XI . C is a closed set

in the relevant L1 space (of r.v. Y with El IYI < -) and p(YC) is

defined as before.

22
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At this stage there does occur an important difference. The fact that

C(l ixn11) is not empty does not imply that C(Xn) #0 . Indeed, every

infinite dimensional Banach space contains points e, n E N, of unit norm

such that jlei - e -> 1 whenever ioj . Then C(e ) 0 whereas

C(lle nl) is the constant 1. This fact affects some of the results in

sections 4 and 5.

The approximation Lemma 4.1 reains valid (same proof).

Theorem 4.1 has to be modified, but the Corollary 4.1 is not affected.

Thus we have

Theorem 7.1. For all integrable random variables Y we have

(7.1) 4() !- lim El X - Y11 5 () + p(Y,C)
t

and if <() < the first inequality becomes an equality when, and only

when, Y C .

Proof. The first inequality (7.1) follows from 0(.,(X)) (-,(Xn-Y))

The second inequality has to be proved only when C # 0. If XE C then

limElIxt - Y ll 5 lim EclIx t-xll + IJx-Y l) =lim EllX t -X1 + p(X,Y) but,

by Lemma 4.1, lim EllXt - Xli f< (Q) .

It remains to prove that if O(Q) < - then equality on the left implies

Yc C. If Y d C then there exists c, 0 such that E I IXt - Y l llA > C

for every A with P(A) > 1 - e and large t. Let A be the set described

* in Lemma 3.1 with c replaced by E/2 and denote by B its complement.

Then lim ElIxt -Yfj Z: lim EIXt -YllB + lim EIXt - YlllA -a (B) + c >

*() + c/2. 0
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Corollary 4.2 has to be modified in the same way as Theorem 4.1.

Lemma 4.2 remains valid.

The results on simultaneous approximation (Theorems 5.1 and 5.2) remain

unchanged.

The few reformulations of the results of sections 4 and 5 which were

necessary in the general case are not needed when S is finite dimensional.

It is not difficult to prove that for finite dimensional Banach spaces

S, if Y E C(IX n ) then there exists ZE C(X n) with IIZII = Y.

Moreover, if S is a finite dimensional Banach space the results of

section 6 also carry through.

Theorem 7.2. Let S be a finite dimensional Banach space and X-- n

be S-valued random variables. If lim EllXt1i < W then C(Xn ) is not

empty. Furthermore, there exists a finitely additive S-valued function

with domain G and for every Y E C there exists a sequence of increas-

ing bounded stopping times t n(Y) such that (6.7) holds for every scalar
m

valued simple random variable V =I X 1 iA (Ai C i l,...,m).
iml i

The proof being similar to that of Theorem 6.1 we just show how to

construct a suitable . For brevity we do this for two-dimensional S

over the reals. Let (el,e 2) be a basis of S and Xn = Xn el + Xn e2

with real X', X" . Let X' e + Xe c C be such that I IX'e + Xe2[I =
n n 1 2 1 21

lim EliX tj I X. Define, for AE E ,

I(A) sup{l-m EIX t - X IIA ;lim ElIX t - XillA = (A),
n n

then let *2 (A) =sup{limIXt X I; III} where I is the condition used

n I t
in defining *l and II is the condition lim EIX t - X '1 A f 41 (A) . (If

n

24



S is stricly convex this step is not necessary since then 2 is

determined by 0 and "
) Define *(A) - sup{lim E(X - X )+;I,II}

n

and similarly 42(A) . Let i = 20 - 0 (ifl,2) . f e1 + je

will have the required properties.

Remark 7.1. Theorem 7.2 fails in infinitely dimensional S , even

if we add the requirement that C A 0 . Indeed, let e be points in S

n

with lie n = ffi 1 and Iei - e. II - 1 for ixj . Let 2 = [0,1], P be

the Lebesgue measure, Xn = 2nen 1 0 ,2 -n I and U= n a(XI'....'Xn).

Then C is not empty but EX t , t - - , has no limit point in the

norm topology. It is possible to obtain results similar to the above only

if one either looks at weaker forms of convergence or imposes restrictions

on the sequence X .

n

25



References

1. D. G. Austin, G. A. Edgar and A. lonescu Tulcea: Pointwise convergence

in terms of expectations. Z. f. Wahrscheinlichkeitsth. u. verw. Geb. 30,

17-26 (1974).

2. J. R. Baxter: Pointwise in terms of weak convergence. Proc. American

Math. Soc. 46, 395-398 (1975).

3. J. R. Baxter: Convergence of stopped random variables. Advances in

Math. 21, 112-115 (1976).

4. A. Bellow: Submartingale characterization of measurable cluster points.

Probability in Banach spaces. Advances in Probability and Related Topics

4, 69-80 (1978).

5. R. V. Chacon: A "stopped" proof of convergence. Advances in Math. 14,

365-368 (1974).

6. P. Fatou: Sdries trigonomOtriques et sdries de Taylor. Acta Math. 30,

335-400 (1906).

7. W. D. Sudderth: A "Fatou Equation" for randomly stopped variables.

Ann. Math. Stat. 42, 2143-2146 (1971).

26



UNC LASS IF IED
SECURITYv CLASSIFICATION OF THS PAGE I'ilo Dom Ente) __________________

READ DE3TRUCMONSREPORT DOCMENTATION PAGE BEFORE COMPLEVNG~ FORM
1. REIPORT NuMSIAER GQVT ACCESSION NO. 3- RECIPIENT'S CAT ALOG N4UMMUER

4. TITLC (and Subtitle) S. TYPE or RMPORT 6 P11911110 COVEREZD

On the Fatou Inequality Technical

6. PERFORMING ONG. REPORT NUM1191R1

7. AIJYNORfa) S. CONTRACT OR GRANT N#JMUERA)

Aryeh Dvoretzky N00014-77-C-0306

9. ECRFORMING Z.01ANIZAION NAME AND ADDRESS to. PROGRAM ELEMENTP*OJECT. TASK

Department of Statistics AREA^ K O UNIT NUMSERS

Stanford University
Stanford, California 94305 NR-042- 373

It. CONTROLLiNG OFFICE NAME AND0 ADDRESS I*. REPORtT DATEStatistics & Probability Program Code (411(SP)) October 1983
Office of Naval Research Is NUN1191oErF PAGES

Arlington, Virginia 22217 ?
-rd. MONITORING AGENCY NAME & AODRESS(If ail~f.en freei Controlling Office) IS. SECURITY CLASS. (of ti report)

ISo. OCLASSIICATION/OOWNZRAOIMG
SCM E DU LE

IS. OISTRIOUTION STATEMENT (of tis Report)

17. 01IST RlOUT ION ST ATEM ENT (61 Ino &6beirOct eiteotOn I Block 20, It dflfeetont &*a. Rep"f

Approved for Public Release: Distribution Unlimited.

1S. SUPPLEMENTARY NOTES

KEYCI COMOS (Cdngt.'uo an t*voePO 44410 Of nec*6007 end Identify NY block aemboc)

Amart, Convergence almost everywhere, stopping times.

20. A151 RACT (CdnIiDAuO oi I&Votf Old it If og@@eeen id Idenfy by &leek mnet)

DD I i Po 1473 EDITION air I Nov e Iis ObSOLET.E UNCLASSIFIED
S N310. L* 31 *01SECURITY CLASSIFICATION ON TNIS PAGE flilho Deve SnoWed




